Sunday, January 11, 2009

Pinker on personal genomics

Read the whole thing in the Times magazine. More on Eric Turkheimer's work here.

My Genome, My Self: ...To study something scientifically, you first have to measure it, and psychologists have developed tests for many mental traits. And contrary to popular opinion, the tests work pretty well: they give a similar measurement of a person every time they are administered, and they statistically predict life outcomes like school and job performance, psychiatric diagnoses and marital stability. Tests for intelligence might ask people to recite a string of digits backward, define a word like “predicament,” identify what an egg and a seed have in common or assemble four triangles into a square. Personality tests ask people to agree or disagree with statements like “Often I cross the street in order not to meet someone I know,” “I often was in trouble in school,” “Before I do something I try to consider how my friends will react to it” and “People say insulting and vulgar things about me.” People’s answers to a large set of these questions tend to vary in five major ways: openness to experience, conscientiousness, extraversion, agreeableness (as opposed to antagonism) and neuroticism. The scores can then be compared with those of relatives who vary in relatedness and family backgrounds.

The most prominent finding of behavioral genetics has been summarized by the psychologist Eric Turkheimer: “The nature-nurture debate is over. . . . All human behavioral traits are heritable.” By this he meant that a substantial fraction of the variation among individuals within a culture can be linked to variation in their genes. Whether you measure intelligence or personality, religiosity or political orientation, television watching or cigarette smoking, the outcome is the same. Identical twins (who share all their genes) are more similar than fraternal twins (who share half their genes that vary among people). Biological siblings (who share half those genes too) are more similar than adopted siblings (who share no more genes than do strangers). And identical twins separated at birth and raised in different adoptive homes (who share their genes but not their environments) are uncannily similar.

...Behavioral genetics has repeatedly found that the “shared environment” — everything that siblings growing up in the same home have in common, including their parents, their neighborhood, their home, their peer group and their school — has less of an influence on the way they turn out than their genes. In many studies, the shared environment has no measurable influence on the adult at all. Siblings reared together end up no more similar than siblings reared apart, and adoptive siblings reared in the same family end up not similar at all. A large chunk of the variation among people in intelligence and personality is not predictable from any obvious feature of the world of their childhood.

Think of a pair of identical twins you know. They are probably highly similar, but they are certainly not indistinguishable. They clearly have their own personalities, and in some cases one twin can be gay and the other straight, or one schizophrenic and the other not. But where could these differences have come from? Not from their genes, which are identical. And not from their parents or siblings or neighborhood or school either, which were also, in most cases, identical. Behavioral geneticists attribute this mysterious variation to the “nonshared” or “unique” environment, but that is just a fudge factor introduced to make the numbers add up to 100 percent.

No one knows what the nongenetic causes of individuality are. Perhaps people are shaped by modifications of genes that take place after conception, or by haphazard fluctuations in the chemical soup in the womb or the wiring up of the brain or the expression of the genes themselves. Even in the simplest organisms, genes are not turned on and off like clockwork but are subject to a lot of random noise, which is why genetically identical fruit flies bred in controlled laboratory conditions can end up with unpredictable differences in their anatomy. This genetic roulette must be even more significant in an organism as complex as a human, and it tells us that the two traditional shapers of a person, nature and nurture, must be augmented by a third one, brute chance.

The discoveries of behavioral genetics call for another adjustment to our traditional conception of a nature-nurture cocktail. A common finding is that the effects of being brought up in a given family are sometimes detectable in childhood, but that they tend to peter out by the time the child has grown up. That is, the reach of the genes appears to get stronger as we age, not weaker. Perhaps our genes affect our environments, which in turn affect ourselves. Young children are at the mercy of parents and have to adapt to a world that is not of their choosing. As they get older, however, they can gravitate to the microenvironments that best suit their natures. Some children naturally lose themselves in the library or the local woods or the nearest computer; others ingratiate themselves with the jocks or the goths or the church youth group. Whatever genetic quirks incline a youth toward one niche or another will be magnified over time as they develop the parts of themselves that allow them to flourish in their chosen worlds. Also magnified are the accidents of life (catching or dropping a ball, acing or flubbing a test), which, according to the psychologist Judith Rich Harris, may help explain the seemingly random component of personality variation. The environment, then, is not a stamping machine that pounds us into a shape but a cafeteria of options from which our genes and our histories incline us to choose.


1 comment:

Anonymous said...

"Behavioral geneticists attribute this mysterious variation to the “nonshared” or “unique” environment, but that is just a fudge factor introduced to make the numbers add up to 100 percent."

This variation is no more mysterious than that part of the variation accounted for by genes.

Blog Archive

Labels